The aim is to develop an R package, which is new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, A bimodal Weibull Distribution, The Discrete Lindley Distribution 1, The Discrete Lindley Distribution 2, The Gamma-Lomax Distribution, Weighted Geometric Distribution, A Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, Ram Awadh Distribution, The Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, The Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.
Installation
You can install the development version of new.dist from [GitHub][https://github.com/] with:
# install.packages("devtools")
devtools::install_github("akmn35/new.dist")Details
new.dist Density, distribution function, quantile function and random generation for parameter estimation of distributions.
Example
dbwd Density function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
pbwd Distribution function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
qbwd Quantile function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
rbwd Random generation for a Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
library(new.dist)
rbwd(5,alpha=2,beta=3,sigma=4)
#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262dsgrd Density function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis(beta) parameters.
psgrd Distribution function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
qsgrd Quantile function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
rsgrd Random generation for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
library(new.dist)
rsgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308dsod Density function for a the Standard Omega distribution with alpha and beta parameters.
psod Distribution function for a the Standard Omega distribution with alpha and beta parameters.
qsod Quantile function for a the Standard Omega distribution with alpha and beta parameters.
rsod Random generation for a the Standard Omega distribution with alpha and beta parameters.
dugd Density function for the Uniform-Geometric distribution with theta parameter.
pugd Distribution function for the Uniform-Geometric distribution with theta parameter.
qugd Quantile function for the Uniform-Geometric distribution with theta parameter.
rugd Random generation for the Uniform-Geometric distribution with theta parameter.
dtpmd Density function for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
ptpmd Distribution function for the Power Muth distribution shape (beta) and scale (alpha) parameters.
qtpmd Quantile function for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
rtpmd Random generation for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
dtprd Density function for the Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
ptprd Distribution function for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
qtprd Quantile function for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
rtprd Random generation for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
duigd Density function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
puigd Distribution function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
quigd Quantile function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
ruigd Random generation for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
dwgd Density function for the Weighted Geometric distribution with alpha and lambda parameters.
pwgd Distribution function for the Weighted Geometric distribution with alpha and lambda parameters.
qwgd Quantile function for the Weighted Geometric distribution with alpha and lambda parameters.
rwgd Random generation for the Weighted Geometric distribution with alpha and lambda parameters.
ddLd1 Density function for the Discrete Lindley distribution 1 with theta parameter.
pdLd1 Distribution function for the Discrete Lindley distribution 1 with theta parameter.
qdLd1 Quantile function for the Discrete Lindley distribution 1 with theta parameter.
rdLd1 Random generation for the Discrete Lindley distribution 1 with theta parameter.
dmd Density function for Maxwell distribution with scale (theta) parameter.
pmd Distribution function for a Maxwell distribution with scale (theta) parameter.
qmd Quantile function for a Maxwell distribution with scale (theta) parameter.
rmd Random generation for a Maxwell distribution with scale (theta) parameter.
dkd Density function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
pkd Distribution function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
qkd Quantile function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
rkd Random generation for Kumaraswamy distribution with shape (alpha, lambda) parameters.
dgld Density function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
pgld Distribution function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
qgld Quantile function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
rgld Random generation for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
rgld(5,a=2,alpha=3,beta=4)
#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043ddLd2 Density function for a Discrete Lindley distribution 2 with theta parameter.
pdLd2 Distribution function for a Discrete Lindley distribution 2 with theta parameter.
qdLd2 Quantile function for a Discrete Lindley distribution 2 with theta parameter.
rdLd2 Random generation for a Discrete Lindley distribution 2 with theta parameter.
dEPd Density function for the EP distribution with lambda and beta parameters.
pEPd Distribution function for the EP distribution with lambda and beta parameters.
qEPd Quantile function for the EP distribution with lambda and beta parameters.
rEPd Random generation for the EP distribution with lambda and beta parameters.
library(new.dist)
rEPd(5,lambda=2,beta=3)
#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342dRA Density function for a Ram Awadh distribution with scale (theta) parameter.
pRA Distribution function for a Ram Awadh distribution with scale (theta) parameter.
qRA Quantile function for a Ram Awadh distribution with scale (theta) parameter.
rRA Random generation for a Ram Awadh distribution with scale (theta) parameter.
domd Density function for the Muth distribution with alpha parameter.
pomd Distribution function for the Muth distribution with alpha parameter.
qomd Quantile function for the Muth distribution with alpha parameter.
romd Random generation for the Muth distribution with alpha parameter.
dpldd Density function for a Power Log Dagum distribution with alpha, beta and theta parameters.
ppldd Distribution function for a Power Log Dagum distribution with alpha, beta and theta parameters.
qpldd Quantile function for a Power Log Dagum distribution with alpha, beta and theta parameters.
rpldd Random generation for a Power Log Dagum distribution with alpha, beta and theta parameters.
library(new.dist)
rpldd(5, alpha=2, beta=3, theta=4)
#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600dLd Density function for Lindley distribution with theta parameter.
pLd Distribution function for Lindley distribution with theta parameter.
qLd Quantile function for Lindley distribution with theta parameter.
rLd Random generation for Lindley distribution with theta parameter.
Corresponding Author
Department of Statistics, Faculty of Science, Selcuk University, 42250, Konya, Turkey
Email:coskun@selcuk.edu.tr
References
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics-Theory and Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference,Journal of Applied Statistics, 49 (12), 3044-3062.
